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ABSTRACT 

The work presented in this report is confined to the initial impactive 
behavior of uniform prismatic bars of constant pre-impactive velocity. 
Various nonlinear stress-strain relationships with no strain-rate effect 
are considered. The fact that the bar is kiteidj- t i i i ~ ~ f i f i ~ d  is taken 
into account in the equation of conservation of mass. The lateral motion 
is ignored; however, its effect is discussed during the derivation of 
Rankine-Hugoniot equations for the impacting bar of strain-hardening 
material. For the case of no strain hardening, the analysis in an Eulerian 
reference system is camed out with the method of characteristics until 
the occurrence of first unloading. Various formulas are derived for the 
possihle iterative computation of stresses, strains, and velocities. The 
general behavior of energy dissipators is studied by means of a bar 
of elastoplastic material with infinite strain hardening. It is shown that 
the bar will be crushed from both ends and, provided that lateral mo- 
tion is prevented, it is also shown that the shock temperatures are 
helpful in energy dissipation. This paper indicates the number of 
measurements required for obtaining the first estimate of mechanical 
properties of the unknown impacted surface when the properties of 
the impacting bar are known. 

1. INTRODUCTION 

b Planetary landings have made the impactive behavior 
of structural elements, individually or as a whole, an 
increasingly important phenomenon. The objective of 
this report is to answer some of the basic questions, such 
as the pressures and velocities of interface, and stress 
fronts. To answer these questions, a laterally unconfined 
uniform bar of initial velocity U(l, and mass density p<, is 
considered. A general u = u ( E )  function is used as the equa- 
tion of state of the material. The governing equations of the 
mathematical model are obtained from the conditions of 

consenration of mass and conservation of momentum. By 
changing the end conditions, the following cases are simu- 
lated: (1) bar impacting a rigid surface at rest at one end 
and free at the other end, (2) bar impacting a flexible sur- 
face at rest at one end and free at the other end, (3) bar 
impacting a rigid surface at rest at one end and attached 
to another bar of the same initial speed, and (4) bar of 
elastoplastic property with infinite strain-hardening im- 
pacting a rigid surface at rest at one end and attached to 
a rigid mass of the same initial speed at the other end. 
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II. FORMULATION OF THE PROBLEM 

For simplicity, a prismatic bar of unit cross-sectional 
area is considered. Referring to an Eulerian coordinate 
system (X, T )  (Fig. l), p (X, T )  the mass density, U (X, T )  
the particle velocity, and g (X,T) the strain at a point 
(X, T )  are defined. If po is the initial mass density, 

which relates instantaneous mass at a point to the instan- 
taneous strain at the same point. Here, p is a constant 
between zero and one indicating the Poisson effect. In 
terms of Poisson’s ratio v, p = 1 - 2 ~ .  Since the amount of 
mass getting into a control volume in unit time is equal 
to the time rate of change of the mass in the control vol- 
ume, 

a a 
- (pV)  t- - p  = o  ax 2T 

Using Eq. (1) in (2), one obtains as the requirement of 
conservation of mass 

au 2 F  ac 
ax zx aT (1 + pLE) - - y u -  - p -  = 0 (3) 

It is assumed that ap/ar. = 0. 

The requirement for conservation of momentum leads to 

au 
pa=,, 

Uo, INITIAL VELOCITY 
P O ,  INITIAL DENSITY 

X 

IA 
I 

(4) 

where a (X, T )  is the acceleration, and a is the stress. For 
large deformations in the Eulerian coordinates, the accel- 
eration is 

au au 
aT ax u=-+-u  

Since u = u ( e ) ,  one can write 

(5) 

Using Eqs. (5)  and (6) ,  and Eq. (1) in (4), one obtains as 
the requirement of equilibrium 

(7) 
au au 
ax ?T u - + - - (1 + pg) - 

Equations (3) and (7) are the governing equations for 
the unknowns 5 and U .  Defining a quantity c (which is 
l/(p)% times the speed of sound in the undisturbed mate- 
rial) as 

Fig. 1. Impacting bar and nonlinear uniaxial stress-strain relationship 

2 
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c 

By applying the nondimensional variabIes to Eqs. (3) 
and (7), 

one can nondimensionalize the foregoing equations with 
the following nondimensional variables 

i?v av 3 E  

ax 2t 2X 
u - + - - (1 + E )  E - = 0 

av ?E a E  (1 + e) - - 0 - - - = 0 
ax ax at u u = -  

C 

where Eq. (10) represents the requirement o€ conserva- 
tion of momentum, and Eq. (11) represents the require- 
ment of conservation of mass. 

The initial conditions for the bar incident to impact are 

111. SOLUTION BY METHOD OF CHARACTERISTICS 

If the determinant of the left-hand coefficient matrix can 
be made to vanish, one has to allow discontinuities in the 
first derivatives of the unknown quantities across the asso- 
ciated directions for which Eqs. (13) and (14) were written. 
These directions, if they exist, may be obtained by 

The loci of disturbance fronts, which exist only if the 
governing equations are not elliptic, are called charader- 
istic lines. The relationship between v and E along these 
lines may be obtained as follows. The total differentials 
of v and E in any arbitrary directions are 

i?V 2o 
do =-dx ?X + - d t  2t v 1 - ( l t ~ ) E  0 

l + E  0 - v  - 1  

dx dt 0 0 

0 0  dx dt 

which yields 

1 dt\ 1 

i?E 2 E  

?X ?t d e  = -dx + -dt  

Combining Eqs. ( lo),  ( l l ) ,  and (13), (14) in matrix 
form yields 

0 

0 

dc; 

de 

1 ($)B = o - (1 + E )  (E)'A 

as the characteristic directions. The relationship between 
o and E in these directions may be obtained by equating 
the determinant of the left-hand matrix of Eq. (15) to zero, 

3 
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after one of the vectors is replaced by the right-hand 
vector; this is a necessary condition for a solution to exist, 
and is shown by 

ti 1 - ( l + s ) E  0 

l + E  0 - v  0 

dx dt 0 clv 

0 0  dx de 

= 0 (19) 

which, when Eqs. (17) and (18) are used, yields 

dv - (E)'h de = 0 (Y direction (20) 

dv + ( E ) S d e  = 0 p direction (21) 

These ordinary differential equations (20 and 21) can be 
integrated along the characteristics. 

A nondimensional quantity 0 is defined as 

(' (E) '+  de 
J 

* = I' d e  

Note that E ( E )  represents a nondimensional tangent mod- 
ulus whose value for E = 0 is unity. The nondimensional 
quantity 0 can be looked upon as an average square-root 
tangent modulus in the strain range defined by the initial- 
and steady-state strain. 

From Eq. (22),  the integration of Eqs. (20) and (21) 
yields 

v - * e = f f  (23) 

or by inversion 

(26) 

where (Y and p are the integration constants. Note that if 
(Y and P are known, E can be solved from Eqs. (22) and (26) 
by iteration, and zj can be directly solved from Eq. (25) .  
With L Y ~  and P I  defined as the initial values of (Y and p, 

4 

they can be derived from Eqs. (23) and (24) by using the 
initial conditions (Eq. 12) as 

pi = 0 0  (28) 

In region ABC (Fig. 2), a constant state exists because 
all LY and p curves starting from line AB have the same 
ai and pi values. When an (Y (or p) characteristic curve 
meets a boundary, it will reflect to become a p (or (Y) 

characteristic curve; the new value of (Y (or p) of the 
reflected wave should be computed from the boundary 
condition prescribed at that boundary. 

A. Bar Impacting a Stationary Rigid Surface at 

1. Impact Without Shock 

Left End and free at Right End 

The boundary conditions for this case are 

v = O  at ' x  = O  for t 1 0  (29) 

E = O  at x =  1 +ut  for t A O  (30) 

Any ai curve extending up to the right boundary will re- 
flect back as a p curve whose p can be found by using 
Eq. (30) in Eq. (24). This gives 

Equation (31) implies that the constant state ABC (Fig. 
2) should be extended to cover CBD. In this extended 
region (ABD), the characteristics are straight lines, the 
slopes of which can be computed from Eqs. (17) and (18) 
by using Eqs. (12). This gives 

(33) 

It is known that a constant-state region can be neigh- 
bored by either a simple-state or another constant-state 
region separated by a shock front (Ref. 1). Temporarily 
leaving the case of AD being a shock front, assume that 
the simple wave and the next constant-state regions are 
as shown in Fig. 2. In the AEF region, the particle velocity 
is as indicated by Eq. (29). The p curves initiated from 
AB, which have p constants equal to zj,,, will become (Y 
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I 4- 

CHARACTERISTICS 

CHARACTERISTICS 

Fig. 2. Bar impacting a stationary rigid surface at left end and free at right end ( E , , , ~ ~  < sh-nonlinear case) 

5 
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curves after reflection. The a, constants of the reflected 
curves can be computed from Eqs. (23) and (29) as 

If the material is linearly elastic without any yield point, 
the solution in ADF is 

ar = - B E  (34) 

The strain in AEF can then be obtained from Eqs. 
(26) and (34), remembering that pi  = uO. In this case o= 0 (41b) 

0 0  
& = -  e (35) 

Using Eq. (22), Eq. (35) reduces to 

f E  

For the cases where which again indicates that there is no simple wave region 
(points D, E and G in Fig. 2 overlap). In this case AD is a 
shock front, but there is no energy loss due to heat across 
the shock (see Section 111 2). 

Im (E)'h de = finite (37) 

Eq. (36) may not have a solution. This means that infinitely 
large strains will take place on the contact surface (i.e,, 
the interface will also be a failure front). Assume that 
Eq. (36) has a real root of E~ so that 

Without having the unloading characteristics of the 
stress-strain curve (Fig. l), it is not possible to study the 
conditions in the DFG region where the prevailing phys- 
ical condition is unloading. For the elastic case (DFH 
Fig. 3), one can find that 

0 0  

ar  = -0,) 

p = -  rr 

F = o  

is satisfied. Having computed E and z; in AEF, the slope 
of AE can be computed from Eq. (17) as 

(39) 
1 ($)+= (1 + e r )  (E,)'h 

where E ,  = E ( e r ) .  By comparing the slopes defined by 
Eqs. (32) and (39), it can be seen that the necessary con- 
dition for a simple wave region to take place is 

Figure 3 slrows the solution up to t = 2. For t > the 
elastic bar will leave the rigid surface with -or, velocity 
and witli its original length. 

or, by use of Eq. (35) 

(1 + E, . )  (Er)'h < 1 + u, = 1 + E~ 6, (404 
In Figs. (2) and (3), the particle paths are indicated by 

dashed lines. When there is a simple wave region, it is 
clear that the particles gradually change their velocity 
vector from the initial value to the at rest value, However, 
if there is a shock front in place of a simple wave region, 
the velocity change will be abrupt. 

which is always satisfied, provided E 4 1 for all strains; 
this is the actual case for all materials up to strain harden- 
ing. If Eq. (40) is not satisfied, there will be no simple 
wave region ADE. Consequently, AE will become a shock 
front between two constant-state regions. 

6 
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,6,, CHARACTERISTICS 

Id 
a, CHARACTERISTICS -liL 

8, CHARACTERISTICS 

FIRST 
DISTURBANCE FRONT 

~j CHARACTERISTICS 

X 

CHARACTERISTICS 

Fig. 3. Elastic bar impacting a stationary rigid surface at  left end and free at right end 

We will conclude the study of a bar impacting a sta- 
tionary rigid surface at left end and free at right end by 
restating the following: 

1. The interface of impact remains at rest. 

2. A step strain of E ,  = vo/Or will take place on the 
interface and will survive at least for a nondimen- 
sional time of 2. 

2. Impact With Shock 

A shock front is defined as the loci of points in the 
x , t  plane where there may be discontinuities in the un- 
known functions E and u. If there are discontinuities in 

. E  

the first derivatirjes of the unknown functions ( E  nnd v), 
the loci of points are called characteristics. With these 
definitions, the Q characteristic initiating from the origin 
(Fig. 2) also is a shock front. However, we prefer to call 
shock fronts as those fronts across which one has to allow 
temperature differences for the sake of conservation of 
energy; this additional constraint shows that the a charac- 
teristic passing from the origin in the elastic case is no 
longer a shock front. We will call this front a stress front 
to emphasize the fact that there are still discontinuities 
across the front in the unknown functions. The definition 
of a shock front then becomes the loci of points across 
which the physical quantities have discontinuities and 
temperature difference takes place to compensate for the 
mechanical energy loss. 

7 



4 JPL TECHNICAL REPORT NO. 32-932 

With the new definition, the case for which Eq. (36) 
has no real roots or, more generally, the case for which 

holds, the interface will become a failure front which is a 
shock front. The velocity of the shock in this case is zero. 
The solution is qualitatively shown in Fig. 4. 

Consider the case when the strain, E , ,  in region AEF of 
Fig. 2 is larger than E h ,  the strain-hardening strain (Fig. I), 
where 

[ E ( , , ) ] " >  [E(E.)]',' 

Let us obtain the shock relations using the Rankine- 
Hugoniot procedure (Ref. 2). Call W (a positive number) 
the speed of the shock relative to the particles ahead of it. 
The particle velocity, density, strain, stress, and tempera- 
ture in front of the shock are UE, pz, E:, u:, and T i .  
Respectively, the corresponding quantities behind the 
shock are U,,  p,, E ~ ,  ur, and T,. With the aid of Fig. 6, the 
requirements that the incoming and outgoing flows should 
leave no mass, no momentum, and no energy in the shock 
can be written as 

pw = p,[W + V:: - V,] 

- 0; + p;wz = -ur + p, [W + uy)- U , ] .  

momentum 

In this case, it can be seen that Eq. 40 is not satisfied, and 
that the shock will propagate with a velocity H for which energy 

(44) 

holds (Fig. 5). 

f 

Fig. 4. Bar impacting rigid surface and failing [ vo  > l r n ( E ) ' I .  d t ]  

8 
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Fig. 5. Right-moving shock 

t 

r SHOCK 

PATH 

MOVING SHOCK IN STATIONARY 
COORDINATE SYSTEM 

t 

STATIONARY SHOCK IN MOVING 
COORDINATE SYSTEM 

Fig. 6. Representation of shock in moving and stationary coordinate systems 
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In Eq. 47, the first three terms (on both sides) are pressure, 
deformation, and thermal energies. The constant repre- 
sents the specific heat of the bar material. 

Using Eqs. (45), (46), and (1) 

or 

From Eqs. (48) and (49) 

(49) 

For the cases where there are no simple wave regions, 
observing that ahead of the shock 5: = U: = 0, U*, = U ,  
and behind the shock U ,  = 0, one obtains 

U" 
- P W  
E ,  = - 

(52) 

(53) 

For this case, if the material is linearly elastic because of 
Eqs. (41c), (9d) and (9f) 

w = c  (2) 

and, the velocity of the front 

w + u, = c + u, = c(l + u,) (55) 

which, when compared with Eq. (39), indicates that the 
shock front is coincident with the (Y characteristic passing 
through the origin. Let us see that this is a stress front 
rather than a shock front. The necessary condition for this 
is that no heat energy is generated behind the shock. 
Using Eqs. (49) and (l) ,  Eq. (47) becomes 

In Eq. 56, the first term on the right is the increase 
of deformation energy; the second term is the increase of 
thermal energy as the material crosses the shock. It is 
obvious that the first term on the right is equal to the term 
on the left if the material is linearly elastic, and the bar is 
laterally confined and initially unstrained ( p  = 1, e: = 0). 
For this case 

T ,  = T,, (57) 

implying that there is no temperature increase behind the 
shock. If the bar is elastic and laterally unconfined, Eq. 
(56) shows a temperature decrease when the bar is initi- 
ally unstrained. This physically unjustified result is a con- 
sequence of the fact that the lateral motion has been 
ignored in the derivation of Eq. (56). 

In Fig. 7, three different types of stress-strain relation- 
ships are shown (i.e., nonlinear, linear, and locking); 
assume that the material of the bar may be any one of 
these. For the nonlinear case, a simple wave region 
always develops. For the upper boundary (AE) of the 
simple wave region (Fig. 2)  to fall in the solution domain, 
it is necessary that Eq. (36) have a real solution. If this 
is not the case, the rigid boundary will be a failure sur- 
face, as well as a contact surface. For the linear case, 
there is no simple wave region. Boundary regions AE and 
AD (Fig. 2)  are overlapped; this line is a stress front, but 
it is not considered as a shock front since there is no 
temperature rise across the front. For the locking case, 
there is no simple wave region. However, there is a shock 
front which, in the x, t plane, has a slope of 

The energy (indicated by the shaded area in Fig. 7c) is 
provided by a temperature increase across the shock. The 
shock for this case is shown in Fig. 5. The values of gr 
and U, can hc found from u ( 8 )  curve and 

4 

Equation (59) can be derived from Eqs. (45), (49), and (l), 
and the conditions E: = U: = 0, Uz = U,. However, since 
most of the solids do not behave as shown in Fig. 7c, a 
shock will normally not take place, because of a possible 
strain hardening, unless the material is laterally confined. 
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U 0 

(01 NONLINEAR (b) LINEAR (c) LOCKING 

Fig. 7. Various stress-strain relationships 

B.  Bar Impacting a Flexible Surface at Rest at Left 

The boundary conditions for this case at the interface, 

End and f r e e  at Right End 

and at x = 1 + oOt are, respectively 

The interface velocity and the interface strain can also be 
computed from the characteristics in the flexible body by 
the use of Eqs. (W), (26), and (64) as 

(67) 

where 6, and gi are unknown and pertain to the flexible 
surface (see Fig. 8). When the a, characteristics meet the 
free boundary, they become pr curves that have the same 
constant value as Pi ,  i.e., 

Noting that the nondimensionalization in the flexible body 
is performed by the use of 

In the flexible surface, the initial conditions are 
- 
X 

z=t 
(Symbols with bar above represent, in the flexible surface, 
the counterparts of entities defined for the bar). 

From Eqs. (63) and (23) 
ai = 0 

The interface velocity and the interface strain computed 
from the characteristics of the bar by the use of Eqs. (%), 
(26),  and (62) are 

(65) 
a, + Pi a r  + 00 

vi=-=- 2 2 

Pi - u,, - ar 
E f  =-=- 28 28 

11 
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CHARACTERISTIC 

PARTICLE PATH 

Fig. 8. Bar impacting flexible surface at rest at left end and free at right end (no shock, no failure case) 

and defining 

one can write from Eqs. (60), (66), and (68) 

or, using Eqs. (69a) and (8) 

and from Eqs. (65) and (67) 

or 

Defining the nondimensional quantities e and f as 

and using Eqs. (74) and (75) in obtaining  CY^ and p r ,  from 
Eqs. (72) and (73),  one can write 

1 - ef 
1 + ef C Y r  = u,,- 
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0 

which, when substituted into Eqs. (65) and (66) gives 

1 
Of = u,,- l + e f  

0, ef 
El= - -  6 l + e f  

(77) 

(78) 

It should be noted that of (Eq. 77) is nondimensionalized 
with c if and 6 aie psiiive ncndimezsional qumtities). 
The average tangent modulus is e, and f is a function of 
6’s and y’s. The y’s are a measure of the nonlinearity in 
the stress-strain relationships. For linearly elastic materials, 

= 8 = Ij; = s = 1 for which Eqs. (77) and (78) become 

u,, 
Cf = - l + e  (79) 

Note that e (Eqs. 79 and 80) is a nondimensional, positive 
quantity that can take values between zero and infinity. 
The case of the bar impacting an infinitely soft material 
is represented by e = 0. For e = 00, Eqs. (77) and (78) 
are reduced to Eqs. (29) and (35), respectively. Equation 
(78) is very useful in the computation of the initial con- 
tact strains, and, hence, the constant stresses. 

Fi 

t 

t 

If at least one of the materials at the contact surface 
cannot provide the E f  of Eq. (78), a failure front be 
established at the contact surface. However, because of the 
lateral confinement of the impacted material, the strain- 
hardening phenomenon may take place; this may cause a 
shock front in the flexible body (Fig. 9) for which 

In Fig. 10, various possible cases of a bar impacting a 
flexible body are shown qualitatively. Any one of these 
cases can be easily studied analytically. 

C. Bar Impacting a Rigid Surface at Rest at Left 
End, and Attached to Another Bar of the Same 
Initial Velocity at the Right End 

The boundary conditions for this case are 

C 

C 
u = u f  = U f =  u = F ,  at x =  1 +ult 

for t L O  

where sf and are unknown. 

r INTERFACE AND 
FAILURE SURFACE 
FOR BAR 

9. Impacting bar fails on the interface, creating a shock wave in the impacted body (vu > , .r > Eh) 

13 
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NO SHOCK 
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SHOCK FAILURE 
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Fig. 10. Various cases of bar impacting a flexible body 
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Fig. 10. Various cases of bar impacting a flexible body (Cont'd) 
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t 

P o ,  Q ( E ) ,  uo 

(Symbols with bar above represent, in the bar to the right, 
the counterpart of entities defined for the bar to the left.) 

p o ,  O c d ,  Co=uo 

Let us first study the case of linearly elastic bars 
(Fig. 11). When the Pi curve meets the boundary on the 
left, it becomes an ( Y ~  curve that has a constant value -u,, 
(from Eq. 34 with 8 = 1). The initial conditions in the 
neighboring bar to the right are 

for t = O I Ei  = o  
ui = u,, - 

Then, from Eq. (24) 

- uoc pi = Y 
C 

(84) 

(85) 

Equation (85) also is the value of theLP, characteristics 
coming from the free boundary at the right, similar to 
Eq. (31). Note that the quantities for the bar at the right 

4 
1 

are assumed nondimensionalized with Eqs. (69). The inter- 
face velocity and the interface strain computed from the 
characteristics of the bar to the left by the use of Eqs. (25) 
and (26) are 

The same quantities can be computed from the bar on the 
right by the use of the same equations along the interface. 
These equations are 

C 

C 
Ly, + u(J = 

- - a, +pi 
v i = - -  2 2 

(89) 

1 6  
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Using Eqs. (69) through (71), and Eqs. (86) through - 
(89), one writes from Eqs. (83) with s = 0 = y = 7 = E = 
E = l  

or 

and 
C z, + I;,,= 

- u o + p r  - C 

2 2 = C  c 

or 

c ( - un + p r )  = c a,. -t = u,, -(- : ) 

t 

Using Eq. (93) in Eqs. (86) and (87), the equations 

are obtained. Note that e is a measure of the relative 
rigidities of the bars. The case of e = 0 corresponds to a 
free end, and e = w corresponds to a rigid end. When 
both bars are identical, e = 1. 

where e is as defined in Eq. (74). 

2e 
E f  = Do- l + e  

and 

0- 

e - 1  
Uf  = Do- e + l  (95) 

Using Eq. (74), one can solve for a, and p,. from Eqs. (90) 
and (91) 

(92) 

The case of nonlinear material properties is complicated 
because of the presence of the incoming simple wave and 
the outgoing simple wave at the interface (see Fig. 12). 
However, some time later, the interface will be between 
vivo coonstznt states, cne in each bar. From Eqs. (34) and 
(S), the incoming a still has the value -uo. Using Eqs. 
(25) and (.26), Eqs. (86) through (89) can be written as 

(97) 

\ 

I 

Fig. 12. Qualitative representation of the case of Fig. 11 when the bar materials are nonlinear 
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2 Of = 

C 

C 

- 
- a, + U o T  

(99) - 
2e E i  - 

Equations (96) through (99), and (69) through (71) lead to 
the following from Eq. (83) 

C 

j I I 

and 
C 

( Y r  + u,,= pr - 00 - C 

2 2 c - =  C 

Solving for a, and p, yields 

- c e f - 3  
a,.=zj -- 

'I  C ef + 1 

E - 
4 fC 

Fig. 13. Stress-strain relation of elastoplastic material 
with infinite strain hardening 3ef - 1 

/ 3 r  = 00- ef + 1 (103) 

than E,,. However, to deal with every phase of the stress- 
strain law of Fig. 13, assume 

where e and f are as defined by Eqs. (74) and (75). 

Using Eq. (103) in Eqs. (96) and (97) leads to 

ef - 1 
01 = 00- ef + 1 

The phenomenon of u,, > E~ is described in Fig. 14. First, 
a strain front of magnitude E,/  (line AD, Fig. 14) will 
sweep across the bar with a velocity 

v(l 2ef 
E l = - -  0 e f + 1  1 

Ul = -= (dt/dx) a 1 + u,, 

The strain induced in the neighboring bar can be easily 
computed by the use of Eq. (83). If the u,/E, ratio is larger 
than the initial tangent modulus, shock fronts will take 
place. This case will not be treated in this work. 

causing the particles behind the front to slow down by 
an amount E , , .  ti'lien particles of constant velocity u,, - E,,  

meet the boundary at rest, they will stack on it with E = E,, 

creating a shock front of constant speed (line AF, Fig. 14). 
On the other hand, when the strain front of magnitude E , )  

meets the rigid end at  the right, it will tend to reflect 
back; however, the reflected wave falling in the plastic 
range will not be able to propagate. At this instant, some 
portion of the bar to the left will come to rest with a 
strain E~ with the remaining portion still moving at 
a velocity uo - F ~ .  The mass M on the right still has a 
velocity of o,, that is just beginning to decelerate because 

D. An Elastoplastic Bar of Infinite Strain-Harden- 
ing Impacting a Rigid Surface at Rest at Left 
End, and Attached fo a Rigid Mass M of the 
Same Initial Velocity at Right End 

The stress-strain diagram for this case is shown in Fig. 
13. The presence of the yield condition (because of Eq. 
36) will permit only the propagation of strains smaller 

1 8  
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SHOCK. 

- 

0- 

t 

'ICLE PA1 " 

+ X  
0 I" 

Fig. 14. Elastoplastic bar of infinite strain-hardening impacting a rigid surface a t  rest at  left, and attached 
to a rigid mass M of the same initial velocity at right end 

of a force uC > a,. This means that some stacking of parti- 
cles with E = E~ (i.e., another shock) will take place until 
the mass M and the particles stacked on it are brought to a 
velocity of uo - E#.  The speed of this shock will gradually 
decrease and disappear when unloading starts (curved line 
DE, Fig. 14). Further deceleration of M will tend to 
unload the particles of velocity o, - and strain E ~ .  

Assuming that the unloading takes place on a line parallel 
to the initial tangent modulus in the stress-strain plane, 

this front of imminent unloading (line EF, Fig. 14) will 
have a propagation speed of 

1 
= u 0 - - l  (108) ur = (dt/dx)o 

The particles behind this front will now follow the motion 
of the mass M. Until this front meets the shock front at 
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the left end of the bar, all particles of velocity uo - will 
continue to stack up at the left end. After the unload- 
ing front, the particle paths will be curved, hence, the 
speed of the shock front at the left will start to decrease 
(curved line FK, Fig. 14). These paths can be computed 
from the deceleration of mass M ,  and the mass of the 
remaining portion of the bar in motion under constant 
force u,). If, at the time when the end with the rigid mass 
M meets the stacked particles at point K ,  mass M still has 
some kinetic energy, it will be consumed by generation of 
a strong shock with very high temperatures. 

The constant speed of the shock front, at the left up to 
point F (Fig. 14), can be computed from Eqs. (53) and 
(8) with F ,  = E ,  and U,, = c(u,, - E , ! )  as 

or 

As a first approximation, assume that the mass of the bar 
is negligible in comparison with M .  Then the speed of 
mass M up to point D is u(,. Beyond point D, up to point 
K, this velocity is 

assuming uC =: u,/ along DE. In Eq. (110), u!,/M is as- 
sumed nondimensionalized with c2/L.  The particle 

velocity above line E F  is also u,. The particle velocity 
below line AD is v , ~ ,  and the particle velocity between 
lines AD and E F  is u,, - e, , .  The speed of the shock at 
the left after point F is now available from Eq. (109) by 
replacing u,, - E,/  with u , ~  

dx u, 
- = - + u u ,  dt  E~ 

At this stage, it would be well to compute the maximum 
axial velocity of the bar for which the system would be 
stopped exactly at  point K (Fig. 14) under zero gravity 
field. Let S be defined as 

mass of the rigid body M 
S =  (113) mass of the bar 

Writing the requirement that the maximum deformation 
energy plus the increase in thermal energy A E ~  in the 
bar is just equal to the initial kinetic energy of the system, 
in terms of the dimensional quantities 

Assuming cy/, as being small compared to E ~ ,  and neglect- 
ing AE, ,  the following nondimensional equation is derived 

$4 

where u,, is the approximate velocity required to stop the 
system before appreciable shock temperatures are induced. 

IV. SUMMARY OF RESULTS 

The work presented in this report has been on the initial 
impactive behavior of uniform prismatic bars of constant 
pre-impactive velocity. Taking into account the fact that 
the bar was free to deform laterally and the material was 
nonlinear, the govering equations of the one-dimensional 
problem were obtained through the use of Eulerian coor- 
dinates. After nondimensionalization, the solution for 
various end conditions was derived by the method of 
characteristics. It was shown that strain hardening of the 
bar material may cause the shock phenomenon to occur. 

The Rankine-Hugoniot equations were used to study the 
impact-induced shocks of the bar. It was determined that 
the lateral motion of the bar particles should be considered 
to correctly compute the shock temperatures. 

The impactive behavior of an energy dissipator-an 
elastoplastic material with infinite strain hardening-was 
studied in a one-dimensional model. As experimentally 
observed, the energy dissipator will be crushed from both 
ends if the far end of the dissipator is attached to a rigid 
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body such as a capsule; this crushing is a function of the 
yield strain of the dissipator-the smaller the yield strain, 
the smaller the crushed length at the far end. If lateral 
motion is prevented, the shock temperatures are helpful 
in energy dissipation. 

The equations given for impact-induced stresses, strains 
and velocities are so arranged that an iteration scheme 
may be readily applied to solve them. For example, the 
iteration may be started by assuming a linear material 
(i.e., 8 = y = 1) ;id SO! ; .~  fer the &st approxtmatiions of 

impact-induced strains. Then, these approximations may 
be used to obtain better estimates of 0 and y ,  and so on. 

The equations given for the impact-induced strains also 
are helpful in indicating the number of parameters in- 
volved in the determination of impact-induced strains and 
stresses. The number of parameters iiidicate the number 
of independent measurements required for obtaining the 
first estimates of the mechanical properties of an un- 
known impacted surface when the properties of the 
impacting bar are known. 
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